THE REACTION OF EXO-6-BROMOTRICYCLO[3.2.1.0 ${ }^{2,7}$]OCTENE-3 WITH ORGANOMETALLIC REAGENTS.
 THE INTERMEDIACY OF A BISHOMOCYCLOPENTADIENIDE ANION

Mıtsuru Sakaı*
Hanagatamı Co., Fukul, 915-02, Japan
(heceived in Japan 15 November 1972; received in UK for publicetion 2 January 1973)
During the course of attempts to generate and isolate bishomo-analogues of cyclopentadienyl complexes ($\left\{\right.$) at low temperatures ${ }^{1}$, we treated exo-6-bromotricyclo[3.2.1. $0^{2,7}$]octene-3 $(2)^{2}$ with a variety of organometallic reagents, and found that 2 undergoes unusual reactions with organolithlum or magnesium compounds.

When 2 was stirred with excess methyllithıum, phenyllithium or vinyllithıum in ether for 2 days at room temperature under nitrogen, bis-endo-bicyclo[3.2.1]-octa-2,6-dien-4-yl (\mathbf{N}^{3} was obtained in 90-95 \% yield. Similarly, treatment of \boldsymbol{f} with n-butyllithium in ether at room temperature for 10 hr gave a mixture consisting of 65 of 3 and 35 of endo-4-n-butylbicyclo[3.2.1]octa-2,6-diene (4) in 95 \% total yield. Elemental analyses ${ }^{4}$ and the m / e peaks at 162 and 210 mass units of $\left\{\boldsymbol{Z}\right.$ and $\underset{4}{4}$ pointed to a dimer and a n-butyl derivative of $\mathrm{C}_{8} \mathrm{H}_{10}$ hydrocarbon respectively. The structures of \mathcal{Z} and $\frac{4}{4}$ are assignable from their spectral properties. The nmr spectra are quite samilar to that of the parent hydrocarbon 5 , except for the disappearance of endo- H_{4} absorption ${ }^{5}$. The nmr coupling pattern, $J_{\text {exo }}-4,5=4.5 \mathrm{~Hz}$ in both cases, is compatible with the conclusion that H_{4} ls in the exo position.

Conversion of 2 to a Grignard reagent, using ethylene dibromide as an en-

[^0]

tralnment reagent, followed by hydrolysis, gave $\underset{\sim}{3}(\sim 90 \%$) and small amounts ($\sim 10 \%$) of a maxture of the three $\mathrm{C}_{8} \mathrm{H}_{10}$ hydrocarbons in the sequence, 5 (95 \%) $\ell^{6}\left(\begin{array}{ll}4 & 8\end{array}\right)>\chi^{7}\left(\begin{array}{ll}1 & 8\end{array}\right)$. In comparison, quenching of the carbanion $\hat{c}^{l b}$ solution in methanol at -78° produces 25% of 3 and 75% of a mixture which contains 96% 条 $3.5 \% 6$ and 0.5% in 95% total yield.

Certain reductions of alkyl halides can proceed yia carbanions ${ }^{8}$, and in fact, 3 has been subjected to several reductions ${ }^{8}$. It is known that kinetic
 $\chi^{1 b, 2,8}$. In conclusion, these results indicate that the reactive anion intermediates, 8 l or $\mathrm{R} \subset$, formed in the reaction of 2 with the organometalilc reagents can react with the another Z to give the dimer 3 similar to the Wurtz coupling product ${ }^{9}$.

Further work is in progress and will be reported in detail.

REFERENCES AND FOOTNOTES

1. (a) S. Winstein, M. Oglıaruso, M. Sakai, and J. M. Nicholson, J. Amer. Chem. Soc., 89, 3656 (1967); (b) M. Sakal, M. Ogliaruso, and S. Winstein, unpublıshed work.
2. A. F. Dıaz, M. Sakal, and S. Winstein, J. Amer. Chem. Soc., 92, 7477 (1970). 2: $\mathrm{nmar}, \tau\left(\mathrm{CDCl}_{3}\right) 3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$ and $\left.\mathrm{H}_{4}\right), 6.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $7.53\left(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, antı- $\left.\mathrm{H}_{8}\right), 8.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{7}\right)$, and $8.92(\mathrm{~d}$, $\left.J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{syn}-\mathrm{H}_{8}\right)$.
3. 3 had a broad melting point, $35 \sim 45^{\circ}$, but good analysis and spectra, which suggest that it is a mixture of meso and dl diastereomers.
4. Satisfactory elemental analyses have been obtained for $\{$ and 4 .
5. 3 ; nmr, $\tau\left(\mathrm{CDCl}_{3}\right) 3.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.92\left(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 4.23(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{6}\right), 4.67\left(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 6.9 \sim 7.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{5}\right), 7.85\left(\mathrm{q}, \mathrm{J} \mathrm{J}_{1}=4.5 \mathrm{~Hz}\right.$, $J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}$, exo $\left.-\mathrm{H}_{4}\right)$, and $8.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8}\right)$.
 $4.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.83\left(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.1 \sim 7.6\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and $\left.\mathrm{H}_{5}\right), 7.85$ (sextet, $J_{1}=J_{2}=8 \mathrm{~Hz}, \mathrm{~J}_{3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, exo- $\left.\mathrm{H}_{4}\right), 8.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 8.65(\mathrm{~m}, 6 \mathrm{H}$, methylene), and $9.10(\mathrm{~m}, 3 \mathrm{H}$, methyl).
5: nmr, $\tau\left(\mathrm{CDCl}_{3}\right) 3.90\left(\mathrm{q}, \mathrm{J}_{1}=5.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.10\left(\mathrm{bd}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$, $4.45\left(\mathrm{q}, \mathrm{J}_{1}=5.5 \mathrm{~Hz}, \mathrm{~J}_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.90\left(\mathrm{bd}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$ and $\left.H_{5}\right), 7.80\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exo $\left.^{2} \mathrm{H}_{4}\right), 8.10\left(\mathrm{~m}, 1 \mathrm{H}, ~ \underline{a n t} 1-\mathrm{H}_{8}\right), 8.20\left(\mathrm{~m}, 1 \mathrm{H}\right.$, endo- $\left.\mathrm{H}_{4}\right)$, and $8.34\left(\mathrm{~m}, 1 \mathrm{H}\right.$, syn $\left.^{2}-\mathrm{H}_{8}\right)$; W. R. Moore, W. R. Moser, and J. E. LaPrade, J. Org. Chem. 28, 2200 (1963).
6. J. M. Nichalson, unpublished work.
7. N. A. LeBel and R. N. Llesemer, J. Amer. Chem. Soc., 87, 4301 (1965).
8. S. Winsteln, Chem. Soc. Spec. Publ., No. 21, 32 (1967).
9. For the lonic mechanism for the Wurtz reaction, see (a) E. Legoff, S. E. Ulrıch, and D. B. Denney, J. Amer. Chem. Soc., 80, 622 (1958); (b) O. A. Reutor, Bull. soc. chim. France, 1383 (1963); (c) P. Sykes, "A Guidebook to Mechanısm in Organıc Chemıstry," Longmans, London, 1965, p 223.

[^0]: * Address correspondence to the Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.

